





## High Efficiency Selective Catalytic Reduction Project

Professor Graham Hargrave Loughborough University





# Heavy Duty Vehicle Efficiency Programme: High Efficiency Selective Catalytic Reduction Project

**Professor Graham K. Hargrave** 

Professor of Optical Diagnostics Royal Society Wolfson Research Fellow

#### **High Efficiency Selective Catalytic Reduction Project**

The objective of the project was to deliver a Selective Catalytic Reduction system capable of >98% NOx reduction to enable engines with high thermal efficiencies to meet regulated NOx emission levels.

### A collaboration between, Johnson-Matthey, Caterpillar and Loughborough University.

#### Loughborough's Role:

- (1) Development of **new reductant dosing system** to achieve the technical objective of >98% NOx reduction.
- (2) Develop **improved CFD design tools** to allow redesign and optimisation reductant dosing systems validated on a gas flow rig and on the testbed engines against real world cycles



#### Facilities and Methodologies Established for the ETI Project

In this highly successful project, Loughborough University achieved its goals through the application of state-of-the-art optical diagnostic techniques to understand the fundamental physics and chemistry of the NOx reduction technology to allow the design of a world-beating technology.

Loughborough University developed novel CFD modelling tools capturing the knowledge and data gained during the experimental programme to define new design tools for the next generation ultra-low emission diesel engines.





- Exhaust simulation up to 15 litre engine
- Ambient 600°C
- Up to 1500 kg/h flow rate
- Fully optically accessible



#### **Long Term Outcomes from the Project**

- Significant knowledge and understanding about engine after-treatment analysis and design was gained and is being applied to new engine designs,
- New state-of-the-art experimental facilities for after-treatment systems which are now being used to develop emission reduction systems for new engines as part of an Advanced Propulsion Centre project,
- New modelling tools are being used for a range of applications including engine analysis,
- Two new PhD researchers were trained through the ETI project. These highly trained research engineers are working on APC projects and within the automotive industry.
- The project won The Engineer 'Collaborate to Innovate' Awards in 2017



#### **New NOx reduction technology: ACCT**



A problem with current SCR NOx reduction systems is the ability to make ammonia during cold start and low temperature exhaust conditions.

Loughborough has developed a new device called ACCT that on-engine converts AdBlue™ into a new solution.

- The new solution is stored and dosed where AdBlue will not decompose
- Provides ammonia from 50°C
- Adds on to the existing AdBlue<sup>™</sup> delivery system and requires no additional pumping units.
- The system is fully scalable.
- The ACCT system will not develop deposits.