

Offshore Renewables

#ETI10

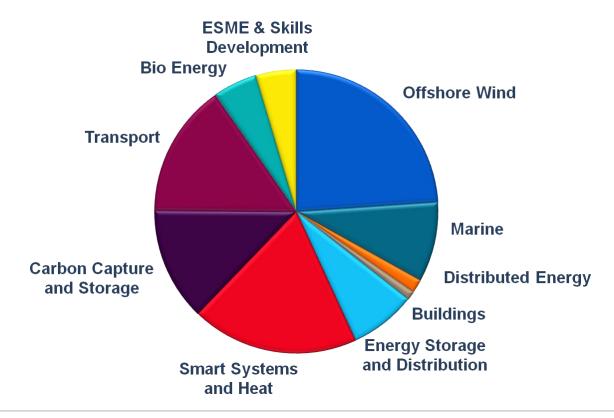
Welcome and Introduction

Programme Manager – Andrew Scott

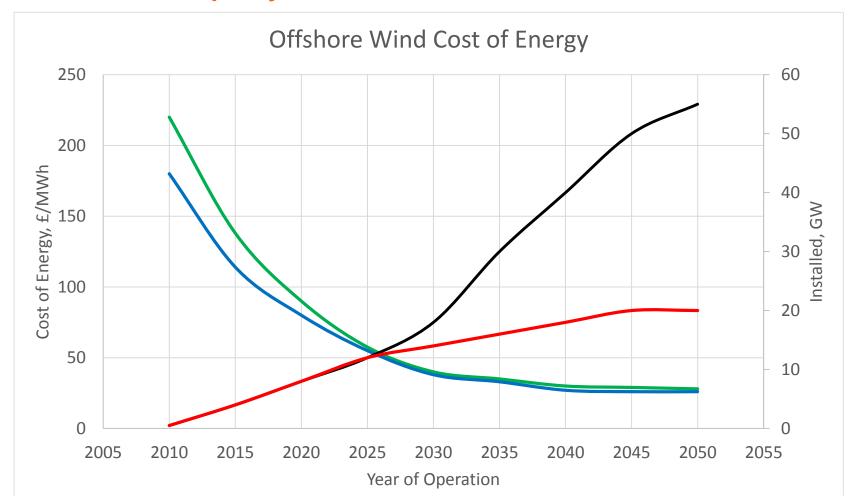
Agenda

Introduction	Andrew Scott (ETI)		
The Offshore Renewables Programme	Andrew Scott (ETI)		
The 'Very Long Blades' Project	Pepe Carnevale (Formerly Blade Dynamics)		
Pelastar TLP Floating Wind Turbine Foundation	William Hurley (Glosten Associates)		
UK Offshore Wind Drive Test facility	Tony Quinn (OREC)		
Marine energy	Henry Jeffrey (The University of Edinburgh)		
Impact on the energy system from Offshore Wind and Marine	Stuart Bradley (ETI)		
Close			

Introduction to the Offshore Renewables Programme


Programme Manager – Andrew Scott

The ETI has made significant investment in Offshore Wind and Marine Energy Innovation


Cost reduction was and remains crucial to Offshore Renewables success

- In 2009,
 - OSW costs >£150/MWh
 - Wave > £600/MWh
 - Tidal > £300/MWh
- In 2017,
 - Offshore Wind: £55 £75/MWh (for most recent CfD round: on line in 2020s)
 - Beating aspiration of £100/MWh by 2020
 - Tidal: £200 £300 / MWh; and Atlantis aiming for less, in line with roadmap
 - Wave: £200 £450 / MWh?
- OSR compete with other forms of low carbon generation, not against each other.
- Cost reductions since 2009 mean that OSW has moved from super sub to opening player, due to cost reduction

Offshore Wind Deployment 2017 onwards

WHAT HAVE WE DONE IN OFFSHORE WIND?

The OSW industry identified key areas for cost reduction

- Bigger, better turbines
- With bigger, more efficient blades
- Installed more cheaply
- With improved, system, cost of energy
- Accessing better wind resource
- Benefitting from volume economics
- With clear returns for stakeholders
- Ability to test new innovation quickly

What are the disruptive technologies going to be?

The ETI has carried out projects that tackled 4 of these areas

Bigger Better Turbines

With higher rated power and higher reliability

Offshore Wind Drive Train Test Facility at ORE

Catapult

Condition Monitoring

Nova

Helm Wind

Installed More cheaply

Floating Offshore System

Bigger, more efficient blades

Accelerating deployment of very long blades project

modular

Lighter

Improved manufacturing, with better

tolerances

Accessing better wind resources (in deeper water)

Floating Offshore System

Nova

Deep Water

WHAT HAVE WE LEARNT

Energy System Scenarios 2017

- Clockwork
- 2050 electricity capacity ~ 130GW
 - 43GW Offshore Wind
 - 10GW Onshore Wind
 - 5GW Other renewables

Patchwork

- 2050 electricity capacity ~190GW
 - 55GW Offshore wind
 - 20GW Onshore wind
 - 45GW Other renewables

Deeper Water Foundation Types

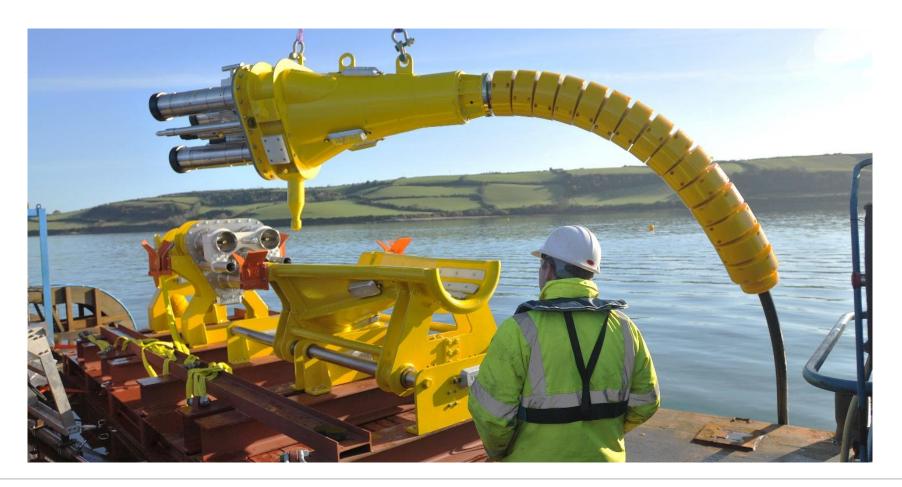
Cost Drivers	Jacket	HyWind	WindFloat	PelaStar
Onshore Assembly	×	×	✓	√
Lightweight Structure	-	×	*	✓
Turbine Performance	✓	✓	×	✓
Siting Flexibility	×	×	✓	✓
Serial Production	×	~	✓	✓

Source: Glosten Associates

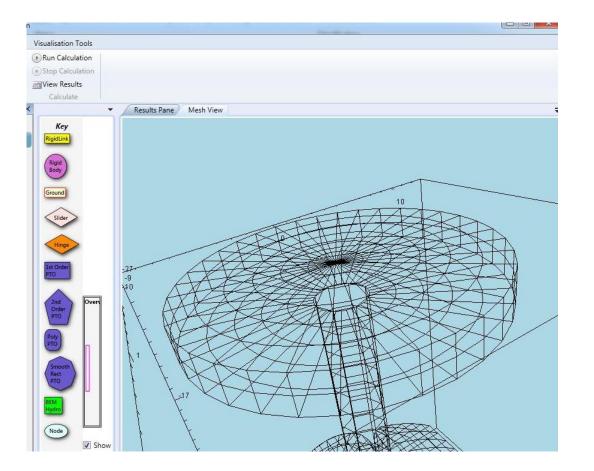
Offshore Wind Insights Paper, published 2015

- With technology and supply chain development there is a clear and credible trajectory to delivering commercial offshore wind farms
- Floating Wind has the potential to be a cost-effective, secure and safe low-carbon energy source which could deliver a levelised cost of energy of less than £85/MWh from the mid- 2020s
- To deliver improved costs, offshore wind needs access to good quality wind resource close enough to shore and the onshore grid system so that transmission costs are minimised and operations/maintenance costs reduced
- Floating technology can provide access to high quality wind resources relatively close to the UK shoreline and in the proximity of population centres
- In water depths less than 30m fixed foundations will be the prime solution, in water depths over 50m floating foundations provide the lowest cost solution – a mix of these technologies is likely to offer the lowest cost pathway to deliver large scale deployment in the UK

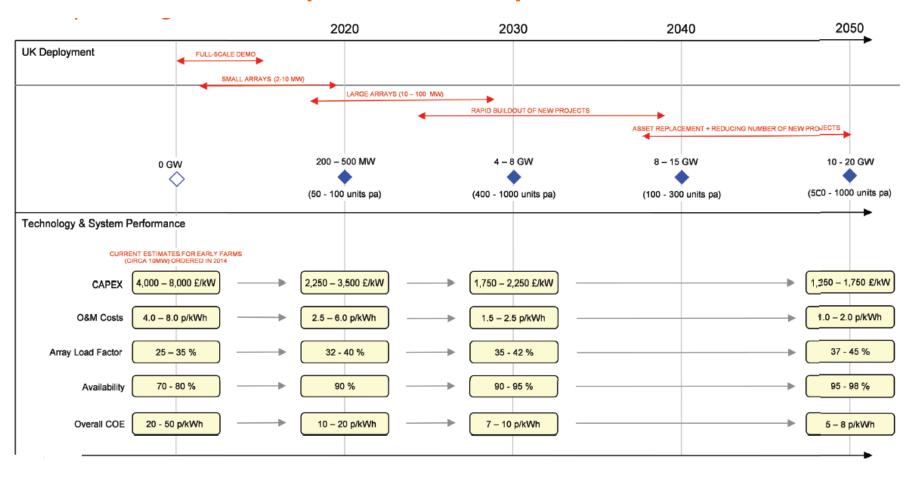
MARINE; WAVE AND TIDAL ENERGY WHAT HAVE WE DONE?


ReDAPT

Wetmate - An 11kV wet connector



PerAWaT


- PerAWaT has created commercial products
 - TidalFarmer, WaveFarmer and WaveDyn
 - Smarttide

Marine Roadmap: issued April 2014

WEC

- Provided insights into the impact of innovation on capex, opex, and energy yield
- Pathways to significant LCOE reduction have been identified
- But none of these pathways is aggressive enough to deliver the LCOE targets in line with Roadmap timescales
 - 2020 targets not achievable until around 2030 too late??
- This in itself is an extremely valuable insight



TEC

- Took a genuine array level approach
- Showed that the Roadmap targets are achievable with targeted innovation investment

WHAT HAVE WE LEARNT?

Insights into Tida Stream energy

Tidal Energy Insights, published 2015

- There is a demonstrable route to making tidal stream energy competitive with other low carbon technologies; tidal stream has the potential to be a material part of the future UK energy system
- Tidal energy is capable of supplying 20-100TWh of the 350TWh of the UK's annual electricity demand
- Potential impact of the tidal industry on UK GDP is estimated to be in the range of £1.4 4.3billion
- The cost of energy from tidal stream arrays can compete with other low-carbon sources
- The sector has transitioned in recent years from small-scale prototype devices, through to full-scale demonstration and early commercial arrays are now in development
- The UK leads the rest of the world in the development of tidal devices
- Significant cost reduction will require coordinated investment in supply chain innovation, processes and people.
- Array and device design integration is vital

Wave Energy Insights, Published 2015

- The UK has some of the world's best available tidal and wave resources
- Even with aggressive cost reduction and innovation activities current attenuator wave energy technologies are unlikely to make a significant contribution to the UK energy system in the coming decades
- Radical new wave energy extraction and conversion system approaches are needed to reduce cost and increase energy extraction and reliability. This will provide a trajectory towards lower cost solutions in the long term

In Summary

- Offshore Wind is both a main player and the main energy hedging options for UK 2050
 - Technology Innovation has and will continue to significantly reduce energy cost
- Tidal could have a role in the future UK energy mix in 2050
- Wave Energy is further behind
- The ETI Programme focused on accelerating innovation and cost reduction
 - Supported by in depth technical due diligence
 - Leveraging a wide range of expertise