

Pelastar TLP Floating Wind Turbine Foundation

William Hurley Glosten Associates

© 2017 Energy Technologies Institute LLP - Subject to notes on page 1

THE ETI AND THE PELASTAR TLP FLOATING WIND TURBINE FOUNDATION

PRESENTED AT TEN YEARS OF INNOVATION

WORKING WITH THE ENERGY TECHNOLOGIES INSTITUTE

- ETI Focus Area: Deep Water Wind
- The Tension Leg Platform
 - Less mature technology
 - Potential for Lowest Cost of Energy
 - Technical Challenges that need solutions
- ETI Push for Ambitious Goal
 - Take Concept through Front-End Engineering Design (FEED) for a FULL SCALE Demonstration (6MW) Project Offshore
- Engineers working with Engineers

DEEP WATER FOUNDATION OPTIONS

Spar:

• Hywind (Statoil)

Semi-submersible:

• WindFloat (PPI)

TLP:

Not demonstrated

TENSION LEG PLATFORM TECHNOLOGY

Oil and Gas Platform Precedent

#4 above is the Magnolia TLP, considered the worlds tallest structure at 1,432 meters from seabed to top of platform.

- Worlds tallest skyscraper is <u>828m tall</u>.
- A PelaStar is <u>285m tall</u> from seabed to blade tip. (with 6MW – 150m blade diameter turbine in 100 meters of water)

#5 - The SeaStar TLP, the oil and gas precedent for PelaStar

PELASTAR TECHNOLOGY SUMMARY

Developed by engineers seeking the best deep-water turbine foundation solution at the lowest cost

Tower

Anchor

Interface Flange Transition Piece Access Platform Upper Column Arm Lower Hull Export Cable Tendon

OUR ETI PARTNERSHIP ADVANCED TLP TECHNOLOGY

An Engineered Technology Development Driven by a Focus on Lowering CoE

- Advanced TLP Technology to Technical Readiness Level (TRL) 5
- Established a design, analysis and regulatory framework
 - Participation in DNV JIP contributed to floating foundation regulatory rules development
 - DNV GL approved Basis of Design and reviewed the FEED-level design
- 1:50 scale model tests performed
 - with software validation reviewed and studied by DNV GL with results co-published

ADVANCED TLP CONFIGURATION TO 5 ARMS

• Provided Redundancy and Reliability not found in 3 or 4-Arm Designs

Design Patents awarded in EU, US and Japan

8

ADVANCED TENDON TECHNOLOGY

Synthetic Cable Tendons solve many of the traditional TLP mooring and installation challenges

- Enable simultaneous tendon and platform installation
- Minimize need to adjust tendon tensions to balance uneven loads at installation Patent Pending
- Tolerate slack-line events in extreme conditions

TENDONS VS. CHAIN - 6MW FLOATING FOUNDATIONS

	PelaStar	Hywind
Mooring System (in 100m water depth)	5 Vertical Synthetic Tendons, 7.5" dia, totaling 420 meters and 10 tons	3 Catenary Chains, 6" dia, totaling 2,400 meters and 1,200 tons.

ADVANCED TLP INSTALLATION TECHNOLOGY

Design of installation vessel

Patents awarded in UK and US

Long-term utility-scale installation and deployment method utilizes a dedicated installation barge

11

DEMO PROJECT FEED STUDY TEAM

Engineering, Integration, Cost and Management

The GE/Alstom 6MW turbine is the first **ALSTOM** turbine to be integrated with the PelaStar foundation

Operations and Maintenance (O&M)

Anchor Fab and Installation

Project Certification

Tendon Fabricator

Turbine Assembly

and Platform

Installation

Shipyard/

Fabricator

Tendon Fibre

Technology

Gentechnical & Offshore Solution

GeoSea

DSM

TODE

ETI Programme Manager: Andrew Scott

12

DELIVERED FIRST FULLY-VETTED, TRANSPARENT COST DEFINITION TO INDUSTRY

- Demonstrated that the TLP at commercial scale will have the lowest LCOE among all FOWT concepts
 - has the lowest primary steel cost (lowest weight and simple to build),
- Recent steep reductions in bottom-fixed costs, due to competition and learning curves, will lower floating wind baseline cost estimates

farm development timescales.

🤰 PELASTAR

TODAY: NEW OPTIONS FOR DEMO INSTALLATION

- DEME / GeoSea's ORION 2019 delivery 3,000t lift at 50m reach
 - Enables Transport and Installation of PelaStar in Deep Water
 - Vessel Dynamic Positioning and Heave Compensation on the Hoist

OUR PARTNERSHIP ADVANCED TLP TECHNOLOGY

- Established the TLP as a viable foundation option for deep water offshore wind
- Generated worldwide interest in the TLP for deep water offshore wind turbine foundations
 - competing concepts emerging

Today – we continue to pursue a demonstration project and commercialization of PelaStar....

with confidence that the ETI vision and trust in engineering to optimize lowest-cost solutions will be realized.

Our ETI Partnership was Extremely Beneficial for Industry, and Highly Rewarding for the Participants

Bill Hurley, PE wlhurley@glosten.com

"Scientists discover the world that exists; <u>Engineers create</u> the world that never was." Theodore von Karman