Targeting new and cleaner uses for wastes and biomass using gasification

Dr Geraint Evans - Programme Manager Bioenergy

18th May 2017
Agenda

• Energy Technologies Institute
• Value of bioenergy
 – Wastes
• We can already use combustion to get energy from waste - why do we need something different and why gasification?
• What is gasification and why is ultra-clean syngas important?
• What is the current UK gasification project landscape?
• The ETI’s project work
The Energy Technologies Institute (ETI)

- The ETI is a public-private partnership between global energy and engineering companies and the UK Government.
- Targeted development, demonstration and de-risking of new technologies for affordable and secure energy
- Shared risk

ETI members

- bp
- CATERPILLAR
- EDF Energy
- Rolls-Royce
- EPSRC
- Department for Business, Energy & Industrial Strategy

ETI programme associate

- HITACHI
 Inspire the Next
ESME analysis has driven ETI’s nine key technology programme areas

Innovation thinking and innovation delivery

- New knowledge
 - Up to £5M / 2 years
- Technology development
 - £5-15M / 2-4 years / TRL 3-5
- Technology demonstration
 - £15-30M+ / 3-5 years / TRL 5-6+
- Reduced risk
Bioenergy

A key lever – particularly with CCS
Requires sustainable supplies – imports and indigenous

- Major potential for creating ‘negative emissions’ via CCS
- Could support a range of conversion and utilisation routes - flexibility
 - Hydrogen
 - SNG
 - Heat
 - bioeconomy
- ETI investing in soil science, logistics and value chain models
- Informing decisions
 - “what do we grow?”
 - “where do we grow it?”
 - “how do we use it?”
Value of bioenergy in the energy system: transition and credits

Negative emissions provide flexibility, headroom

- Target is 105 million tonnes of CO₂ in 2050
- Bioenergy could deliver net negative GHG emissions of around -55 million tonnes of CO₂ per year in the 2050s (approximately half our emissions target in 2050), and meet around 10% of UK future energy demand (~130 TWh/yr in 2050).
- This extra headroom helps avoid expensive abatement actions such as in transport
- Provides more flexibility on transition
Key insights from BVCM modelling

- Gasification technology is a key bioenergy enabler and resilient to a number of different scenarios
- The sector will need a combination of feedstocks – wastes, UK-grown and imported biomass
- Planting around 1.4 Mha of second generation bioenergy crops would make a significant contribution to the sector
- Location preferences for resource production are apparent (Miscanthus – South/East, SRC – North/West, SRF - Midlands)
- Deployment of BECCS makes a significant difference to the bioenergy sector:
 - With CCS, BECCS technologies dominate, clustered around key coastal hubs
 - Without CCS, more heat and bio-methane are produced and the sector is more spatially distributed
Biomass – many sources, each with different strengths & weaknesses

- Sugars, oils, starches
 - Wheat grain, corn, rape oil, soy
- Forest derived – long rotation forestry (LRF)
 - Forest sourced (residues)
- Energy crops
 - Miscanthus, Short Rotation Willow, Short Rotation Forestry
- Agricultural residues
 - Straw, rice hulls, bagasse
- Wastes
 - Waste wood (pallets), MSW, C&I
We can already use combustion to get energy from waste - why do we need an alternative and why gasification?

- Need to be able to effectively use the variety of feedstocks available to the UK at the smaller scale in the nearer term
 - Feedstock flexibility
 - Wastes, especially in the nearer term
 - Steam cycle efficiencies drop sharply at smaller scales – engines maintain efficiencies at smaller scales
- Resource efficiency
 - Existing EFW business models focussed around waste disposal
 - Drives low efficiency regional scale plants – not easy to use waste heat
 - Stronger focus on recycling
- Integration within towns
 - Lower plant impact e.g. visual
 - Integration with heat networks
- Future uncertainties – resilience
 - Wide variety of outputs, not just electricity
 - Product compatibility
- It is the most efficient way to generate future “negative emissions” from biomass with CCS.
Gasification Resilience

Gasification to yield an ultra-clean tar free syngas

direct combustion

chemical synthesis

Furnace / Boiler
Methane (bioSNG)
Engine / Turbine
Fuel cell
Hydrogen
Fischer Tropsch
Ethanol (fermentation)
Mixed alcohols
DiMethylEther (DME)
Methanol synthesis
Carbon monoxide
Ammonia

CO₂ capture

CO₂ storage for negative emissions

Power (& heat)
Fuels & secondary products
chemicals, materials & secondary products

Diesel / jet fuel
n-paraffins

MTO / MOGD
Formaldehyde
Acetyls
Fertilisers

CO₂ capture

CO₂ storage for negative emissions

©2017 Energy Technologies Institute LLP - Subject to notes on page 1
What is gasification and why is ultra-clean syngas important?

How to get from $C_x Y_{1.77x} O_{0.49x} N_{0.24x}$ to CO, H$_2$ and some CH$_4$ (synthesis gas) without any undesirables.
Partial combustion at high temperatures (700-1200°C)

Pyrolysis
Produces mix of gases, condensable vapours, char & ash

Gasification
Produces smaller mix of gases compared to pyrolysis (H₂, CO, CH₄, CO₂, N₂ if air used), minor lower hydrocarbons, some char, & ash

Combustion
Produces hot gaseous combustion products comprising mainly of CO₂, N₂, minor CO, minor others, ash
Balance “heat making” reactions against “heat using” gasification reactions

- Feed + air
- Unreacted feedstock (15°C)
- Drying (<100°C)
- Pyrolysis (100-400°C)
- Oxidation (~1000°C)
- Char and gas reduction (1000-700°C)
- (too) cool char and ash (<700°C)
- Hot raw syngas

Examples of feedstocks:
- Refuse Derived Fuel
- Wood chips

Reactions:
- \[\text{Carbon} + \text{O}_2 \rightarrow \text{CO}_2 + \text{HEAT} \]
- \[\text{Carbon} + \text{CO}_2 + \text{heat} \rightarrow 2\text{CO} \]
- \[\text{H}_2\text{O} + \text{heat} \rightarrow \text{H}_2 + \text{O} \]
There’s a wide variety of gasifier types – but, to get the value from gasification to deliver its potential, the syngas must be delivered ultra clean and tar free.

- Downdraft
- Updraft
- **ABFB – atmospheric bubbling fluidised bed – BC & RD**
- PBFB – pressurised BFB
- ACFB – atmospheric circulating fluidised bed
- PCFB – pressurised CFB
- **Indirect CFB (Dahlman)**
- Entrained flow
- Plasma gasifier
Market attractiveness (town scale, waste)

- Each has its own strengths and weaknesses
 - Each may be more or less suited to a particular feedstock and/or application
- Market attractiveness very much depends on application and resource to be gasified
 - For high hazard wastes, plasma becomes more desirable
 - For fuels production from torrefied woodchips, entrained flow becomes more desirable
- Lack of gasification technologies for clean syngas in <10MWe scale
 - Atmos BFB starting to emerge
 - Pressurised BFB not far behind
 - Downdraft not successfully delivered
 - CFB’s may be too large for town scale
Syngas applications from “easiest to hardest”

- **Clean desirable – tars not removed**
 - Boiler/furnace
 - Power/heat
- **Ultra clean AND tar free**
 - Engine
 - Power + heat
 - Gas turbine
 - Power + heat
 - Biological synthesis
 - Ethanol
 - Chemical synthesis
 - Hydrogen
 - Methane
 - Methanol
 - Jet fuel
 - Etc.
Two pathways to remove tars

- High temperature treatment
 - >1200°C for set residence time
 - Risk of soot formation
 - e.g. Adv. Plasma Power

- Controlled condensation & stripping
 - Set of columns
 - Tars recycled to gasifier
 - e.g. Royal Dahlman
Current gasification landscape in UK

- **Type 1**
 - No gas cleaning
- **Type 2**
 - Gas cleaning but no tar removal
 - Improved steam boiler efficiency & reliability
- **Type 3**
 - Gas cleaning & tar removal
 - Allows syngas use in engines, gas turbines, chemical synthesis
ETI’s project work

Gasification with no syngas upgrading Type 1
- Raw syngas
- Direct combustion

Gasification with syngas cleaning but no tar removal Type 2
- Corrosive / erosive components removed - tars as vapours
- Direct combustion

Gasification with syngas tar removal & polishing Type 3
- Tar free & polished syngas
- Direct combustion
- Chemical synthesis

Fuels & secondary products
- Methane (bioSNG)
- Methanol synthesis
- Carbon monoxide
- Ammonia
- Formaldehyde
- Acetyls
- Acids
- Fertilisers
- MTO / MOGD

Chemicals, materials & secondary products
- Diesel / jet fuel
- n-paraffins
- DiMethylEther (DME)
- Ethanol (fermentation)
- Mixed alcohols
- Fischer Tropsch
- Hydrogen
- Engine / Turbine
- Fuel cell
- Furnace / Boiler

CO₂ capture
- CO₂ (n/a for H₂ turbine)

CO₂ storage for negative emissions

Heat
- Power (& heat)

CO₂

Courtesy of NNFCC

©2017 Energy Technologies Institute LLP - Subject to notes on page 1
A set of steps which must all be made to work together – key risks are at the interfaces

Air \rightarrow O$_2$ \rightarrow gasifier \rightarrow Raw syngas \rightarrow Cleaning / conditioning \rightarrow Ultra clean & tar free syngas \rightarrow Furnace / steam \rightarrow engine \rightarrow Gas turbine \rightarrow Chem synthesis
Waste Gasification Programme

Projects

- **EFW project**
 - Appraise (2009-11)

- **WG Phase 1**
 - Select (2012-13)

- **Contract shaping**
 - Define (2014-16)

- **WG demo project**
 - Execute (2017-19)

Support

- **Members**
 - BP
 - Shell
 - Cat RR
 - EDF
 - E-On
 - BEIS

- **ETI staff**

- **External reviewers**

- **Professional DD**

- **Professional Services**
 - e.g. MACE
 - OSL
Scope (Phase 1 to Phase 2)

- Commissioned three FEED (Front End Engineering Design) studies and business plans for specific sites.
- >25% net electrical efficiency over the whole system (from MRF to electricity production)
- Availability >80%
- Designs were tested through modelling and laboratory testing to understand how performance may change using different waste feedstocks (MSW, C&I and waste wood) and at different scales.
Waste gasification demonstrator (£5M ETI investment; £10.5M total)

- Construction & demonstration of a 1.5 MWe power station incorporating gasification with syngas clean up to deliver an “ultra-clean” tar free syngas for use in a gas engine
- Project announcement 25th Apr 2017
 - anticipated finish Sept 2019
 - construction in hand
- Feed will be a mix of C&I and MSW based feedstocks.
- Uses Fluimax - pressurised fluidised bed technology with a high temperature treatment to produce a high quality, H₂ rich syngas.
- Power generation via a specially adapted syngas engine.
- Site will include a unique syngas testing facility.
 - First use will demonstrate an innovative high yielding methanol synthesis process
Currently looks like…
Going to look like…
Conclusions and next steps

- Gasification offers a number of benefits in the UK setting
 - Flexible in feedstock and outputs - resilience
 - Comparable/better efficiencies compared with other technologies, especially at smaller scales: cleaned syngas permits the use of higher efficiency generating processes such as engines
 - Scalable, especially down to the “town scale” of around 5-10 MWe
 - Ability to integrate with CCS to deliver negative emissions
- Gasification of wastes and use of syngas in an engine is technically feasible - ETI’s targets are achievable
- Potential to be cost competitive with other sources of renewable power - scope to reduce costs as experience is gained (especially procurement costs).
- To build confidence in financing and delivering, UK policies should be designed as an integrated programme of stages
- Careful and considered approach to scale up is needed
- ETI’s work in gasification is now culminating in its partnership with Syntech to build a 1.5 MWe gasification power project in Wednesbury, north west of Birmingham.
- Insights paper: Targeting new and cleaner uses for biomass and wastes using gasification - Publication Mid June from www.eti.co.uk