Transitioning to a Low Carbon Energy System

Mike Colechin
The UK energy challenge...

Key targets
- ~34% CO₂ by 2020
- ~80% CO₂ by 2050
- 15% of energy from renewable sources by 2020

Key targets
- Power from a portfolio of sources
- Diversity in fuel supply and conversion
- Market leads on technology selection

Key targets
- Reduce the number of households in fuel poverty and eliminate fuel poverty in 'vulnerable households'

Tensions are increasing...
Preparing for the Energy Transition: Context

- **Increasing demand to 2050**
 - Population: 65 to 77-79 million
 - Vehicles: 24 to 35-43 million cars
 - Housing: 24 to 38 million houses,
 (80% of current stock still in use in 2050)

- **Action to date**
 - Beginning to decarbonise power sector
 - Increasing energy efficiencies (especially in cars)

- **UK energy system is a unique and complex set of interlinked assets and infrastructure**
 - Ageing power plants need replacing
 - Significant wind (and marine) energy potential
 - Significant offshore CO2 storage potential
 - Significant opportunity for UK biomass
 - Reasonable public support for all low carbon options
 - But, poor housing stock and a very significant heating challenge
Energy Technologies Institute (ETI)

The ETI is a public-private partnership between global energy and environment companies and the UK Government.

Targeted development, demonstration and de-risking of new technologies for affordable and secure energy.

Shared risk.

ETI members

- Shell
- Caterpillar
- EDF Energy
- Rolls-Royce
- EPSRC
- Innovate UK

ETI programme associate

Hitachi

Inspire the Next
“No emissions targets” and “-80% CO₂ in 2050” are very different worlds…
As long as we prepare NOW, decisions on 2050 can wait... but not for long
Prepare over next 10 years
creating platform for infrastructure roll-out and growth
Incremental capital investment in a ‘low-carbon’ energy infrastructure

By 2050 total energy system costs could be as much as £300bn p.a.
The UK can achieve an affordable transition (1-2% of GDP) - system optimisation is key

Additional cost of delivering -80% GHG energy system
NPV £ bn 2010-2050

- No Targets
 - Perfect low cost route
 - Practical low cost route
- No building efficiency
- No nuclear
- No CCS
- No Bio
- No offshore wind

- £6bn pa
- £30bn pa
- £3bn pa

1% of 2050 GDP

©2017 Energy Technologies Institute LLP - Subject to notes on page 1
ETI’s Clockwork and Patchwork Scenarios

are representative of the challenges the UK faces in a move to low carbon – displaying the scale of the challenge
Individual energy consumption in the UK*...

* 2010 UK consumption divided by 60M (people in the UK)

Notes: 1. Passenger transport figure excludes international air travel
2. Data excludes heavy industry
GB heat and electricity demand variability (commercial & domestic - 2010)

Source: UKERC (2011)
90% of the UK’s housing stock will still be in use in 2050

20% contribution of household heating to national carbon emissions
Today fewer than 4% have low carbon heating and 90% prefer gas central heating given the choice.
Space Heat Generation

Clockwork

Patchwork

©2017 Energy Technologies Institute LLP - Subject to notes on page 1
ELECTRICITY CAPACITY

CLOCKWORK

» Nuclear provides 40GW of capacity by 2050

» Existing pipeline of renewables built out to 2020, then maintained, with some further uptake of wind in 2040s

» Gas plants retrofitted/replaced with CCS from 2020s

» Hydrogen takes over from gas for peaking capacity from 2030s

» Total capacity of ~130GW by 2050. Balance between nuclear, CCS and renewables

PATCHWORK

» Nuclear replacement of existing capacity only (16GW)

» CCS delayed until 2030s before replacing unabated gas plants

» Wind power capacity reaches 75GW by 2050, mostly from offshore

» Significant capacity of hydrogen turbines (17GW) required to balance intermittent supply

» Solar provides 28GW, Tidal 10GW and Wave 4GW of capacity by 2050

» Total capacity of ~190GW by 2050, dominated by renewables
ELECTRICITY GENERATION

CLOCKWORK

» Nuclear has the highest load factor of all supply technologies, making the largest contribution to total generation by 2050

» Gas with CCS has a seasonal role, providing baseload through winter and more backup through summer

» Improvements to technology means new offshore wind turbines have a load factor of 50% by 2050, meaning a larger share of generation compared to onshore

PATCHWORK

» Despite its limited capacity, the high load factor of nuclear means it contributes ~20% of electricity generation in 2050

» Of the renewables, offshore wind makes the largest contribution of all technologies, while generation from solar is very modest, given its low load factor of 11% in the UK
The UK needs innovation to help it meet its carbon targets

Successful innovation has several critical components: market confidence, finance, public policy and the capability to innovate
Pilot Scale Demonstrator

Technology Considered
“Commercially Proven” & Economies of Scale Achieved

Feedback of R&D needs

Underpinning R&D to mitigate perceived technical, market & financial risks

Applied R&D to address technical issues

Basic R&D:
- speculative, science led
- industry needs led

Research & Development

Demonstration

Deployment

Pre-Commercial Full-Scale Implementation

New Ideas

Technology Push...

...Market Pull

©2017 Energy Technologies Institute LLP - Subject to notes on page 1
It takes time for innovation systems, networks, relationships and expectations to form, evolve and mature.

Weak or immature innovation systems may delay progress and decrease the likelihood of success.

A new technology will pass through distinct stages in its evolution but the process is seldom linear.
Innovations may be idea-led and/or demand-led. The forces of technology-push and market-pull combine to provide continuous challenge to develop cost-effective technologies.

Promising technologies may fail to attract sufficient risk capital and/or the resources needed to support demonstration due to significant market uncertainty.
Useful technologies and ideas are exchanged and may be spun in or out at any stage.

Organisations pursue multiple pathways to advance their ideas.
The ‘critical components’: sustainable innovation requires routes to market, access to finance, a supportive policy environment, and widespread innovation capabilities within companies and ‘the system’
Policy journey...

Key Issues:
- Systems approach
- Overcoming technological roadblocks
- Building innovation capability
- Strategic collaboration
- Promoting entrepreneurship
- Demand-side policies
Market journey...

Market confidence and expansion

Key Issues:
- Missing markets
- Multiple risk factors
- Novel technologies
- Finance to support demonstrators
- Consumer acceptance
Capability journey...

Innovation capability

<table>
<thead>
<tr>
<th>Capability requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business driven capabilities</td>
</tr>
<tr>
<td>Operational</td>
</tr>
</tbody>
</table>

Technology driven capabilities

Based on Zawislak et al 13

Key Issues:
- Disruptive innovation
- New business models
- Skills gap
- Dependence on environmental policy
- Commercialisation skills
Company journey...

<table>
<thead>
<tr>
<th>Sources of finance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public sector</td>
</tr>
<tr>
<td>Private finance</td>
</tr>
</tbody>
</table>

- Sweat equity/personal finance
- Personal finance/grant funding
- Angel finance
- Private equity/venture capital
- Initial Public Offering

Financial/company journeys may differ, often depending on the type of technology. The journey shown is stylised to illustrate potential sources of finance available.

Key Issues:
- Externalities
- Path dependency
- Coordination failures
- Risk and uncertainty
- Long time horizons
- Leverage vs crowding in
Successful innovation systems often involve open and iterative processes, which are complex. They depend on multiple interactions between different actors.
Priority is ‘closing the loop’ to deliver the ETI’s outcomes

ETI Communication delivers tailored views of knowledge for defined audiences

Feedback
• more knowledge created
• allows ETI to target areas for further work

ETI adds value

Use

Acquire

Organise

Disseminate

...used by the ETI to deliver impact on the UK’s energy system through capability and credibility by driving technologies to commercialisation

...used by ETI Members to further the development of their individual business strategies and policy aims, delivering value

...used by the broader stakeholder community to
• inform policy,
• support and develop supply chain
• build investor and industry confidence
Delivering Impact

Delivery
Activity that creates project ‘outputs’

Action
Delivery of project ‘benefits’ to relevant stakeholders (beneficiaries)

Impact
Defined project ‘outcomes’ have been achieved

Delivering:
• knowledge for stakeholders
• knowledge about stakeholders
• knowledge from stakeholders
Collaboration and shared understanding is required to help the innovation process

involving interactions across science, business and government to facilitate knowledge transfer and learning

it is easier to achieve a transition with a shared understanding of the drivers of new low carbon energy technologies